

Field Testing and Phenotyping for Breeding

Sanesh Ramburan Jamlick Mwathi

EiB BOND Webinar – July 2021

Who are we?

• Sanesh Ramburan (Phenotyping Lead Africa)

- Based in South Africa (Petit breeding station)
- 20 years experience (Multi-environment trials, cropping systems research, commercial breeding, plant physiology, cultivar adoption, G x E).
- Crop experience Wheat, Barley, Oats, Sugarcane, Maize.
- 3 years with Bayer (Legacy Monsanto)
- Roles Organization leadership, testing network design and management, operational management, analytics/systems/processes.

• Jamlick Mwathi (Testing Lead – Sub-Saharan Africa)

- Based in Kenya (Nairobi)
- 12 years of experience in breeding, multi-environment trials, project management.
- Crop experience Rice and Maize.
- 9 years with Bayer/Legacy Monsanto.
- Roles Testing network management, resource optimization, team management.

Introduction

What will this seminar cover?

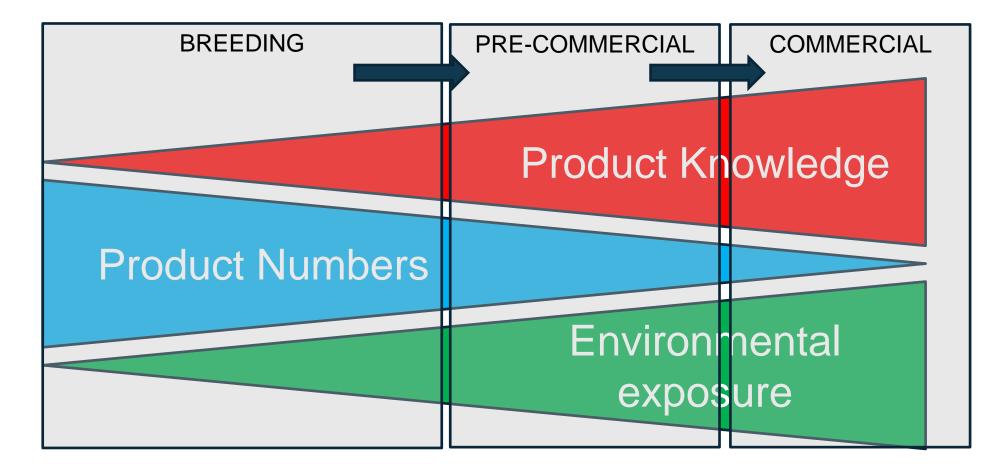
1. Overview and fundamentals of field testing and phenotyping

• Field testing concepts, critical considerations for network design, organizational structures, and key disciplines within phenotyping.

2. Field trial execution

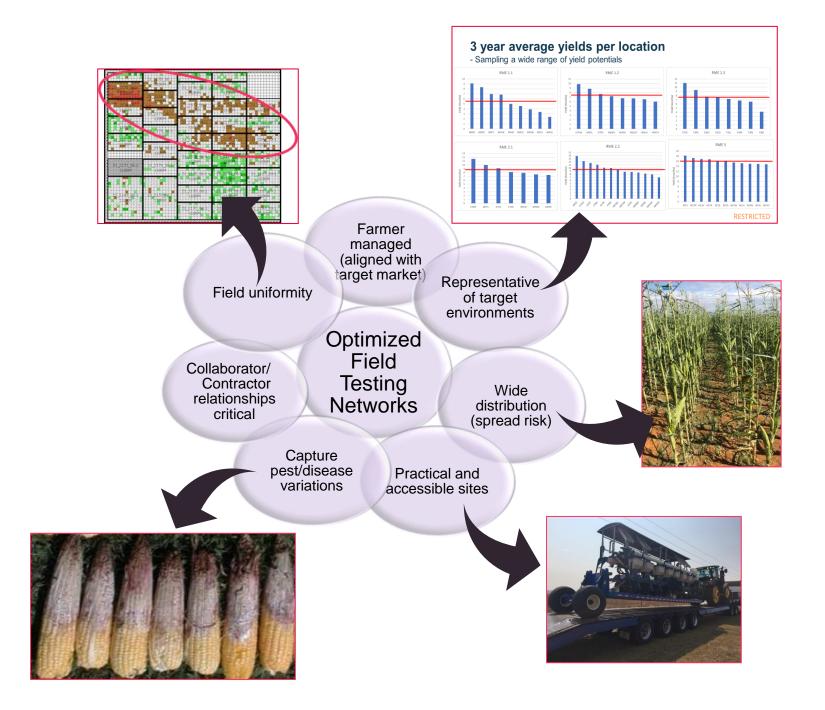
• Site selection, land prep, planting, trial management, data collection, harvesting.

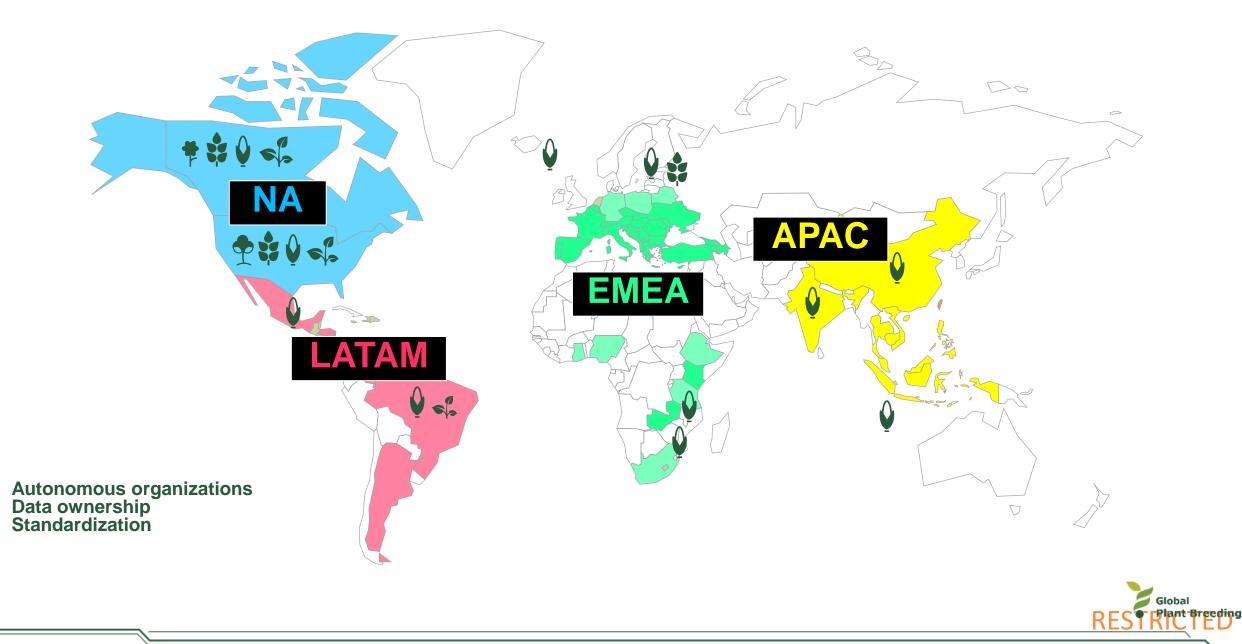
3. Data quality management


• Tiers of data quality management, importance of managing spatial variation, automated QC.

BAYER

Fundamentals of Field Testing and Phenotyping


The Product Testing Journey (The big picture!)


BAYER E R

RESTRICTED

Bayer Field Testing/Phenotyping Global Hubs

Modern Transdisciplinary Phenotyping

BAYER

Field Trial Execution

Key concepts

Goal is to identify and eliminate all possible variables

Uneven emergence

- poor seed to soil contact
- inadequate moisture
- Cloddy field conditions
- avoid taking certain notes

Sprayer tire track damage

- careless or inexperienced operator

RESTRICTED

- guess rows effect
- lack attention to detail
- difficult to quantify effects

Guess Rows

- Deactivate plots with guess rows +/- 15 cm variance
- May require several ranges to be deactivated
- Monitor this while planting
- Recalibrate/fix GPS immediately

Gaps

- Hand plant gaps before V2 stage
- Deactivate plots with gaps >1.2m
- Deactivate adjacent plot due to competition

Weed Control

- Poor weed control creates variability
- Late season weed control
 - Harvest issues
 - Accurate moisture readings
 - Questionable data
- Deactivate due to weed pressure

Fertilizer deficiencies

- blockage or restricted knife on an anhydrous applicator
- Use only calibrated fertilizer equipment
- Ensure all monitoring equipment is working properly
- Possibly change fertilizer application technique to reduce potential variability

Ponding

- Intense rainfall, poorly drained soils
- Poor field selection
- Inspect fields during off season...
- Avoid mapping plots in these areas...use filler

BAYER E

Animal Damage

- Avoid plots near bushy areas
- Need to differentiate between animal damage and stalk lodging
- Take good notes and make sure QA/QC delegate is aware of situation

Nematode Damage

- sandy soils
- Stunted plants, damaged roots
- Variation across plots, reps & field
- Abandon by rep or entire location

RESTRICTED

Severe weather events

- determine value in taking field notes
- determine if field is harvestable
- could impact pollination
- only collect harvest traits

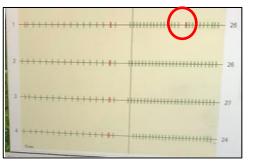
Soil variability

- site selection...
- use filler or better rep placement...
- Deactivate the plots

Data Quality Management

Different tiers of data quality management (Field Trials)

Pre-planting

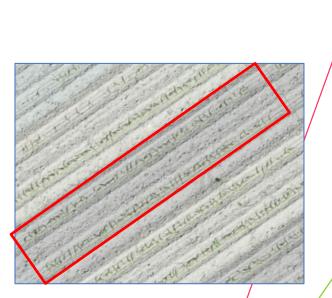

- // Entry verification
- // Trial packing
- // Trial scanning

// Planting

- // Skips/double
- // Alley alignment
- // Range shift/plot swap

// Early season trial management

- // Gap identification and plot deactivation
 - // Establish rules and thresholds
 - // Capture reasons for discarding plots
 - // Neighboring plot effect


Different tiers of data quality management (Field Trials)

- Infield data collection (Protocol-related QC)
 - Establish protocols that minimize data collection errors e.g. SOPs, training and verification
- // Plot data collection (Digital tool QC)
 - // Numeric thresholds for traits minimize finger errors

// Field-level QC

- Ø Digital trial maps identification of spatial trends
- // UAV-collected traits

52		-											5.03					-	tline.	_	_	_	_	_	
51		10	8.68	9.91	11	8.58	11	10	10	5.11	8.24	8.5	4.79	1	. 12	9.84	13	12	9.70	10	10	10	11	12	12
50		12	11	91819	39/2	7.35	21-1	5,5?	30. :1	128	928	8.	4.23	1	. 12	15	12	12	13	11	12	12	12	10	13
49		8.24	9.19	9,41	£18	B/46	12	9.39	12	5.24	10	9.8	6 4.71	1.	. 13			_			-				
48		10	11	10	12	7.28	10	9.56	8.89	6.23	10	7 49	5.31	12	. 14	14	12	12	2FI 13	11	13	14	12	12	13
47		11	10	11	12	9.18	10	11	11	5.20	10	1)	5.32	13	. 10	12	13	12	12	13	12	10	13	14	13
46		10	10	8.99	14	9.87	9.51	12	11	14	12	<u> 2</u> 4	4 5.68	14	. 12	13	13	12	13	13	13	14	12	11	14
45		10	10	12	9.76	13	12	10	11	12	13)	5.47	13	. 11	13	13	12	13	13	12	14	14	13	11
44		12	12	JM	190	1B	295-1	距	71:4	100	04)	4	5.65	13	. 12	12	11	10	14	13	10	14	12	13	14
43		12	9.95	140	12B	М	10	10	11	11	9.91	١.,	. 5.07	11	. 14	JM	1510	B-	247-1	JE6	42.1	130) (B4)	11	13
42		11	10	10	9.61	9.29	9.42	11	11	13	11	1)	5.69	12	. 12	140	12B	M	11	12	12	15	14	13	13
41		9.31	11	9.96	10	12	12	11	11	10	10	1.	6.30	13	. 10	12	14	12	10	12	11	12	11	11	12
40		11	9.95	13	12	9.16	13	10	11	10	12	9 9	4.73	12	, 12	12	14	11	12	12	12	14	11	11	13
39		10	9.16	11	12	11	9.67	10	14	13	13	9	5.56	1	. 13	13	14	11	11	13	13	12	12	11	13
38		10	10	JM	1810	B	29-1	JE (62.1	100	04	11	5.66	1.	. 13	9.84	14	12	12	14	12	12	14	11	13
37		13	12	140	sille	M	12	9.48	9.92	12	13	10.	5.06	2	. 13	J₩.	140	B	25-	JE 6	3 9.4	130	04)	12	13
20		12	0.03	10	44	12		12					r. 01	-			-						_		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	2

Final

Set 3 - 47596 R3 C10

> 2 ABC

> > 5

222222

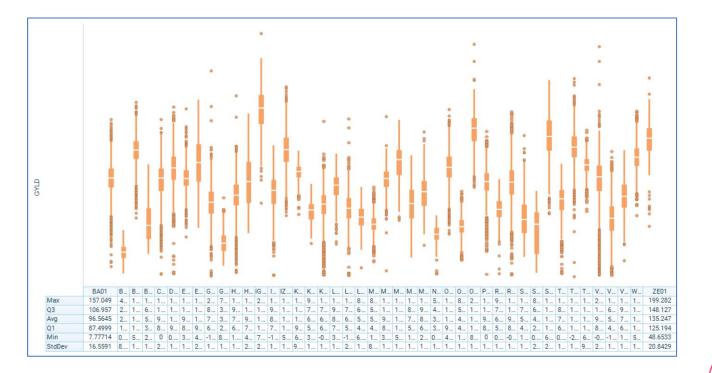
Stand Count

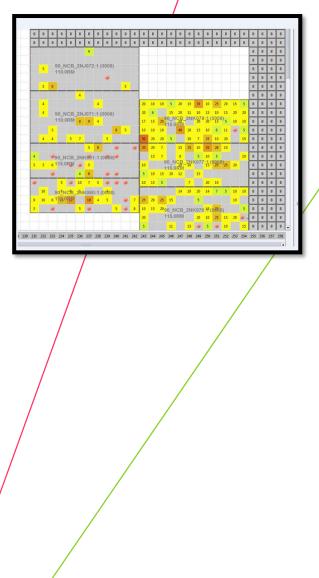
4

Value must be 0.0 -45000.0, 2 decimals

> 3 DEF

6 MN0

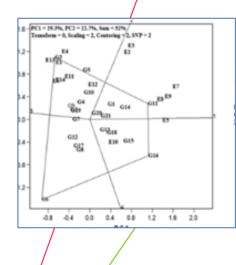

RESTRIC



Different tiers of data quality management (Field Trials)

Post-harvest multi-trait QC and outlier detection

- // Are calculated traits calculating correctly?
- // Network level visualization of trends



Other critical topics – to be covered in workshops

- // Mechanization and automation
- // Testing network optimization G x E, location evaluation, network design
- // Digital data collection UAV workflows
- // Weather/Soil/Management data Metadata
- // OR models and system efficiencies

Thank you!

